1.北方华创“半导体工艺腔室、设备及密封圈在位检测方法”专利公布
2.中国科学院发展出新型三维共价有机框架 助力实现高性能锂金属电池
3.中国科学院研发出超采样成像技术 实现像素“分割”成像
1.北方华创“半导体工艺腔室、设备及密封圈在位检测方法”专利公布
天眼查显示,北京北方华创微电子装备有限公司“半导体工艺腔室、设备及密封圈在位检测方法”专利公布,申请公布日为2024年10月29日,申请公布号为CN118866737A。
本申请实施例提供了半导体工艺腔室、设备及密封圈在位检测方法,涉及半导体工艺技术领域,其中,所述半导体工艺腔室包括:工艺门和工艺管;工艺门的一侧设有环形槽,环形槽内设置有密封圈,工艺门还开设有多个真空吸附孔,在沿环形槽的周向上,各真空吸附孔的孔口间隔分布于环形槽的槽底,各真空吸附孔分别用于与真空源连接,密封圈盖设于真空吸附孔的孔口;工艺管的底部设有开口,在工艺门处于关闭状态的情况下,工艺门的设有环形槽的侧部与工艺管的底部封堵连接,密封圈夹设于工艺门与工艺管之间,密封圈绕设于开口的外周。所述半导体工艺腔室具备密封圈不容易从工艺门的环形槽中脱出的特点。
2.中国科学院发展出新型三维共价有机框架 助力实现高性能锂金属电池
锂(Li)金属具有极高的理论比容量和低电化学电位,被广泛用作高能量密度电池的负极材料。锂枝晶的不可控生长和循环充放电过程中活性锂的持续消耗,导致锂金属电池库仑效率低、循环寿命短。在锂负极上构建人工固态电解质中间相,是抑制锂枝晶形成并提高循环性能的策略。三维共价有机框架具有沿3D方向延伸的框架,避免了层间π-π堆叠相互作用。而由于亲锂基团的多样性和密度不足,电池表现出较差的动力学性能。因此,构建具有致密亲锂基团的三维共价有机框架以实现均匀的锂吸附和沉积仍是挑战,或为追求高性能锂金属电池提供新思路。
中国科学院上海高等研究院研究员曾高峰和副研究员徐庆等,开发了新型三维共价有机框架作为锂金属电池的负极保护层。这一框架具有高密度的锂亲和位点,能够实现均匀的锂沉积行为调控。相关研究成果以Three‐dimensional Covalent Organic Framework with Dense Lithiophilic Sites as Protective Layer to Enable High‐Performance Lithium Metal Battery为题,发表在《德国应用化学》上。
该研究通过[6+4]合成策略,利用6连接的环三磷腈衍生物醛和4连接的卟啉基四苯基胺合成了新型磷腈三维共价有机框架。结构中的磷腈环和卟啉环作为电子丰富和亲锂位点,提高了三维方向上均匀的Li+通量,实现了高度平滑和致密的Li沉积。该电极涂层提高了Li/Por-PN-COF-Cu电池的库仑效率,促进了快速的Li+传输,使LiFePO4全电池即使在5 C的严苛速率下也能够稳定进行剥离/沉积过程。理论计算揭示了Li+与COF之间的强相互作用,利于Li+脱溶剂化,加快其反应动力学;同时,较低迁移势能表明Li+离子与π电子系统之间存在有利的相互作用。
研究工作得到国家自然科学基金委员会和中国科学院等的支持。
(来源: 中国科学院)
3.中国科学院研发出超采样成像技术 实现像素“分割”成像
数字图像传感器的像素规模与性能是影响天文、遥感等领域成像质量的核心。当前,图像传感器芯片制造已趋近技术极限。中国科学院空天信息创新研究院张泽研究团队首次提出超采样成像概念。近日,相关研究成果发表在《激光与光子学评论》(Laser & Photonics Reviews)上。
数字图像传感器的工作原理本质上是对光场进行采样显像的过程,类似于传统的胶卷。根据奈奎斯特采样定律,一个信息光场周期至少需要两个像素采样才会不丢失信息。因此,图像传感器的像素分辨率是图像显示的细节极限。超采样成像是突破像素分辨率极限,利用少数像素传感器实现大规模像素显像能力的技术。
自数字图像传感器取代胶卷以来,成像技术一直受到传感器采样极限的困扰。人类制造的数字图像传感器在像素尺寸、数量规模和响应均匀性上不及胶卷。依据目前的制造水平,数字图像传感器的像素分辨率和成像质量难以大幅提升。超采样成像技术规避了芯片制造水平的限制,为突破像素分辨率成像提供了一条鲁棒性很强的技术途径。
在实现原理上,该团队采用稳态激光技术扫描数字图像传感器,通过稳态光场表达式和输出图像矩阵的关联关系,精确求解出图像传感器像素内量子效率分布。当使用相机拍摄动态目标或者移动相机拍摄静态场景时,通过获取的像素内量子效率和像素细分算法,可以突破原始像素分辨率,实现超采样成像。稳态激光技术是由该团队首创的锋芒稳态激光技术演化而来,在原理上具有极稳定的光场形式。
超采样成像技术目前可以将像素规模提高5×5倍,即利用1k×1k的芯片可以实现5k×5k像素分辨率的成像。随着标校精度提高,像素分辨率具有提升空间。打个比方,原有像素是一个方块,通过这一技术可以将像素分割,等效变成25个像素(方块),对应着像素规模提升了25倍。
该技术具有广阔应用发展潜力。以红外图像传感器为例,市场化的成像芯片分辨率一般在2k×2k以下,3k×3k、4k×4k的成像芯片尚未有成熟的商用产品,而采用超采样成像技术则可以利用2k×2k芯片实现8k×8k以上的像素分辨率,在光学遥感、安防等成像领域具有应用前景。
目前,这一技术在室内、室外对无人机、建筑、高铁、月亮等目标进行了成像试验,展现出良好的技术鲁棒性。
超采样成像技术流程示意图
(来源: 中国科学院)