凤凰网科技讯 12月26日,今天是理想汽车李想AI Talk直播的第二天,理想汽车董事长李想、智能驾驶研发副总裁郎咸朋围绕着2024年理想智能驾驶发生的变化与主持人进行了深度交流。
此前李想不满智驾推进速度,警告郎咸朋若看不到变化、拿不到头部位置将面临岗位调整,促使团队回归用户体验与产品价值,加速端到端预研。郎咸朋回忆首次试驾端到端车辆,从中关村到北京交通大学,十几天训练成果惊艳,纵向操控超以往,系统靠数据训练,无需复杂规则编写。
去年未推端到端技术,因数据、算力不成熟。今年初,AD Max 车型数据量达 10 亿公里左右,算力达 5EFLOPS,加上预研成果具备条件。理想选纯数据驱动端到端模式提升性能上限,结合 VLM 应对未知场景,有别于特斯拉。
硬件上,李想指出中国路况复杂,夜间有尾灯坏的货车,摄像头无光可视距离仅100 米出头,激光雷达可达200米,能实现130公里/小时AEB自动紧急制动,保障安全,后续车型继续配备。
市场反馈,今年智能驾驶助力理想汽车销量,2月AD Max交付量占比20%左右,下半年超50%。郎咸朋称早期自动驾驶像普通功能,如今端到端+VLM 缓解驾驶疲劳,综合MPI提升,用户愿买单。理想提出有监督智能驾驶,区别于传统分级,是L4先导,用系统1+系统 2方案让自动驾驶学习成长,实现规模效应。目前交付全场景一体化端到端产品,近期还将推送高速城市全场景升级及AI推理可视化交互。郎咸朋预计2025年有望实现L3自动驾驶。
面对竞争,李想认为电动化是入场券,L4才是决胜关键。当下内卷,理想为拿L4“门票”,需500万辆上路车、掌握VLA基础模型能力、有资金招募人才与配备算力。他坚信满足条件能打造如苹果般公司。
以下为直播对话实录:
理想智驾一号位的职业危机
张小珺:听说李想对智驾发了很大的火,你怎么还能留在这?
郎咸朋:当时想哥说了一句很狠的话,他说郎博下半年如果我还看不到变化,咱们还是拿不到头部位置的话,那你这个负责人就可以不用干了。
张小珺:那次发火完之后达成了什么结果?
郎咸朋:我觉得大家就回归的是体验和用户价值,重新把大家的思路聚拢了。我们是给用户做一个有更好体验、更安全、更便捷的产品,而不是说做一大堆什么从指标上看起来挺好的产品。那次所有人心里边又重新回到从产品出发去做智能驾驶,这是我觉得印象最深的一点。
张小珺:你们是那次之后开始转的端到端吗?
郎咸朋:其实在想哥发火之前,我们内部的这个端到端的预研,已经在开展了。那么从那一刻开始,我们端到端的速度就加快了。
张小珺:第一次试驾端到端是什么样的体验?
郎咸朋:我第一次试到这个车,从中关村开到了北京交通大学。开了几公里我就问旁边的贾鹏,这是规则还是怎么做的?怎么我觉得开得这么好呢?他说一句规则都没写,全都是系统按照咱们给它的数据自己训练出来的。
咱们开车都知道,如果前面有个车刹停的话,它是要缓慢减速,甚至还再抬起一点刹车,有这样非常舒适的刹车过程。这个过程我们团队在规则阶段写了很长时间的代码,都没有达到一个完全拟人、解决所有场景的表现。
但我第一次试驾端到端,它的纵向就已经比之前试过所有的都要好的状态,这才用了短短不到15天。所以我觉得那时候建立了一个信心,就是端到端一定能做出来。而且一旦它做出来,就一定会比现在所有的智能驾驶软件都要好。
张小珺:既然端到端是灵丹妙药,为什么去年不上?特斯拉去年就上了,你去年在干嘛?
郎咸朋:我们在等,等足够的数据和算力,等到了我们就能上了。
端到端 VLM大模型其实最终的本质是用人工智能来做自动驾驶。人工智能的三个要素:算法、数据和算力。这三个要素必须全都齐备。我们是今年是准备好了,所以我们能做这个事情。
理想AD Max 车型的销量,去年起来了之后到今年初(高质量训练)数据量达到10亿(公里) 左右规模,这是一个基础。第二是算力基础,今年初我们算力也到了5EFLOPS。再加上第三步,就是端到端的一些预研也有一定成果,所以到今年初是天时地利人和,可以做这个事情了,去年我们还在补课的一个过程。
张小珺:为什么很多企业的端到端是两个模型,而不是One Model?
郎咸朋:这个是算法和理念的问题。我们要做端到端时就给自己定了一个目标,一定要用纯数据驱动的方式来做这件事情,而不是结合了之前的规则来做,所以说它的性能上限会非常高。
张小珺:为什么理想是端到端+VLM,不像特斯拉只用端到端?你们对自己的端到端不够自信吗?
郎咸朋:不能这么讲,我们在做技术方案时充分参考了世界上所有的先进方案,但始终无法解决一个问题是,当一套自动驾驶或智能驾驶系统,它工作时如果遇到之前没有见过的场景,应该怎么处理?我们认为就是端到端+VLM,就是系统1+系统2的方式,很好地模仿人类大脑的工作方式。
张小珺:如果智驾一号位想要推动智能驾驶的投入,老板会成为阻力吗?
郎咸朋:没有,反而李想一直在催促我:郎博,咱们自动驾驶怎么还是慢了?赶紧加快速度!
02
李想:要么就做端到端,要么就不再做自动驾驶。
张小珺:特斯拉没有用激光雷达,你们为什么要用?
李想:很多人不太理解说:为什么要保留激光雷达,还是为了安全。是不是因为你技术不好?不是,中国和美国是不一样的,如果你经常在中国晚上夜路开车,你会看到有尾灯坏了的大货车、甚至可能尾灯坏的大货车会直接停在主路上,至少我们今天的摄像头,能够在深夜里没有光线下看到的距离,其实只有100米出头。
但是激光雷达,在没有任何光线的情况下是可以看到200米的。这就可以帮助我们实现130公里/小时的AEB自动紧急制动。那我觉得这个是非常重要的,因为我们是个面向家庭的车,每个人生命安全都非常的重要,所以这是我们继续保留激光雷达根本所在。而且后边的车型仍然会保留。我相信如果马斯克在中国,在深夜里不同的高速开过车,他也会选择把前面的一颗激光雷达保留下来。因为特斯拉对于安全同样地重视,只是他要在这个环境里来看到。
张小珺:理想激进的用只有一个模型的端到端,其他车企还在用两个模型,为什么?
李想:很多时候可能跟我们有一些比较好的外脑有关,像王兴、陆奇博士,他们会给我们带来很多启发。有一次陆奇博士跟我们讲,你们应该思考一下人是怎么工作的?我觉得这个当时对我们帮助很大。
今年初我还逼着智驾团队去美国,他们在不同的城市开FSD V12。另一方面我们研究工作也在进行,那时已经在发端到端+VLM的各种研究论文了。回来以后我觉得要么你做这个,要么我们就不要再做自动驾驶了。今天你靠这些规则上来做的,跟请个供应商做出来的东西有啥区别?没有啥区别。
我说服郎博他们很重要的一点,我说你们经常解决了一个Corner Case(极端情况),又出现三个其他的Corner Case。你们一辈子都在解决Corner Case,解决不完。
张小珺:所以其他人不转,是因为他们Corner Case解决得比你们好?
李想:有些企业Corner Case确实解决得比我们好,因为他会招很多的人,5倍、10倍的人,然后一个路口一个路口去解决。不但解决规则算法的Corner Case,甚至还自己有地图,去修地图的Corner Case。
张小珺:过去两年在人工智能上,你有什么哇塞Moment吗?
李想:ChatGPT 肯定是了,其次我们内部还是有很多“哇塞”的。一个印象最深的是,我们决定启动端到端并匹配好资源,准备好200人团队,他们训练了几十版模型,第一版放到车上,当时郎博让我们来试,我跟张颖(经纬中国合伙人)在北京研发总部正好就一起试了。张颖坐主驾我坐副驾,当时我就很惊讶:这一个月的训练,比过去三年做的东西,进步速度要快!
张颖之前试过无图NOA,当他试到端到端时发现这跟人很相似,甚至在一个路口,旁边有辆车为了躲行人往我们这边躲时,这个车也适时地避让了。他问为什么能躲那么快?我说端到端响应速度快了好几倍,因为他是个One Model,而不是经过4个步骤。
我们下一个大版本更新时,用户可以在车上直接很清楚地看到端到端的工作方式是什么样的,视觉语言模型工作方式是什么样的,以及人工智能到底是怎么工作的。
03
有监督智能驾驶不是L2的延续,而是L4的先导。
张小珺:大家都说理想做智驾是投入最晚最慢的,你怎么看?
郎咸朋:2018年1月我加入理想时,跟李想讨论过这个问题。什么才是决定最终智能驾驶或自动驾驶实现的最关键因素?我们当时聊的就是数据。人才可以流动、算法可以提升、算力也非常重要,但是只要有健康的资金、合理的资金使用也是能买得到的。
那么最重要就是数据,数据它是买不到的,必须自己有这样一个非常高质量、规模非常大的数据,才可以做好自动驾驶。所以我们要按照节奏来做自动驾驶,刚开始我们要先把车造好、把车卖好,然后积累更多的资金、人才和数据,到了一定时间点再大量投入,去达到更好的自动驾驶的效果。其实从现在结果上也是能看出这一点的:我们自动驾驶的节奏是非常好的。
张小珺:什么时候理想意识到,智驾对于卖车是有帮助的?
郎咸朋:从实际表现来看是从今年开始的,今年智能驾驶确实对于销量有非常好的促进作用。我们2月AD Max的交付量占比只到20%左右,然后到今年下半年超过50%了,这是实打实的业绩。早期大家认为自动驾驶是一个功能,它跟座椅加热没有大的区别,并没有解决用户日常出行的舒适性。直到现在我们用AI来做自动驾驶,端到端+VLM真正解放用户长时间的驾驶疲劳。当我们能达到综合MPI(城市+高速综合接管里程)100公里、几百公里时,大家就真正愿意为自动驾驶买单了。
张小珺:理想提出有监督智能驾驶,跟自动驾驶L1到L5传统分级有什么区别?
郎咸朋:这里面其实体现我们对自动驾驶研发的思路差别。之前很多人认为L3自动驾驶是L2辅助驾驶的延续,只要把L2辅助驾驶的场景越做越多,总有一天能无限趋近于L3,甚至可能就能够做到L3。
但在我们看来,L3或者有监督智能驾驶,它并不是L2的延续,而是L4或者自动驾驶的先导程序。实际上我们是锚着未来的自动驾驶能力去研发、去成长和迭代的,而不是沿着过去一套用L2的思路,去做现在的自动驾驶。
张小珺:你说自动驾驶是能力、辅助驾驶是功能,两者本质区别是什么?
郎咸朋:功能是预设条件,能力是应对所有条件。你不可能穷尽所有的预设。
功能的话,还是用上一代的这种软件1.0方案来做自动驾驶。最大的问题是在研发之初,就要清晰地设定所有条件、所有边界,以及最终确定性的结果。这在自动驾驶里是非常困难的。
能力的话,是用人工智能的方式来做自动驾驶。当我们把自动驾驶当成能力来开发,从最本质思考人是怎么学会开车的。最开始人去驾校学习,掌握基本驾驶技能再考试。考完掌握基本能力之后,作为实习司机一边实践一边提升能力,慢慢地成长为老司机。我们系统1+系统2的方案,让自动驾驶系统拥有这种能力去迭代和成长,随着数据量的增长,它会慢慢地让性能随之提升,这个就是大家经常说的规模效应。
张小珺:你们验证了自动驾驶的规模效应吗?
郎咸朋:我们已经验证出来了。这不是我们发明的,所有的大模型应用都符合这种规律,也就是说数据规模和数据质量的增长,会带动性能的增长。而且性能增长是接近于线性的,这就是我们用大模型最本质的好处。
张小珺:有监督智能驾驶阶段,理想交付给用户的产品长什么样?
郎咸朋:全场景的、一体化端到端产品。要想实现有监督智能驾驶,一个前提是实现车位到车位,也就是解决最前面一百米和最后面一百米。以前智驾是从干道开始,现在可以从小区车位开始,然后包括园区道路、泊车、城市道路,还有高速和收费站ETC都会全部打通。
高速城市全场景升级端到端+VLM,以及创新的AI推理可视化的交互,将在近期随OTA全量推送给所有的AD Max用户。
张小珺:L3什么时候实现?
郎咸朋:按照现在的端到端+VLM这套体系,能力继续迭代的话,我们是有希望在2025年去实现L3的。
张小珺:面对李想年初对于智驾的发火,你的职业危机是什么时候解除的?
郎咸朋:我觉得到现在还没解除,因为还没有做到极致。我们的目标是今年综合MPI(城市+高速综合接管里程)做到100公里接管一次的能力。这个接管不是安全接管,不是说你要撞车了才接管,是用户觉得车开得不符合体验、不舒服的接管。到明年、后年,我们会逐渐提升至500公里、甚至1000公里以上。慢慢让大家对智驾越来越自信、越来越依赖。
张小珺:要实现这样的目标,需要储备多少算力和数据?
郎咸朋:要达到500公里的综合MPI(城市+高速综合接管里程),预计需要2000万Clips(视频片段)的水平。如果2000万Clips从不到5%的老司机去筛选,这里隐含的数据量,要达到50亿公里甚至上百亿公里的水平。
04
电动车这场仗什么时候能分出胜负手?
张小珺:你现在开车智能驾驶占比是多少?
李想:大概80%左右。
张小珺:剩下的20%是因为你们技术不够行吗?
李想:最主要是我赶时间。
张小珺:端到端是自动驾驶的制胜法宝吗?
李想:我觉得端到端只能解决L3,解决不了L4。
张小珺:什么时候可以100%用自动驾驶?
李想:给我三年的时间,它需要技术到位,也需要产品到位,也需要一些环境和政策到位,也需要消费者对于人工智能的信任到位。
张小珺:电动车这场仗什么时候能分出胜负手?
李想:现在中国的汽车仍然非常内卷。电动化和智能化是两场仗,电动化其实是相当于是一张门票,我认为L4会分出来真正的胜负。但是我们今天在做的所有事情,是为了L4拿门票,因为L4所需要花的钱,所需要拥有的能力,所需要的数据量,是今天所不具备的,所以今天大家要靠这个东西去拿L4的门票。
张小珺:拿L4的门票需要什么条件?
李想:足够多的车跑在路上。
张小珺:多少车?
李想:得500万辆以上。第二你要真的自己掌握VLA(视觉语言行动模型)这个基础模型的能力。第三,你要有足够多的钱去招募最顶级的人才,以及足够的算力,有这三个条件。
张小珺:当满足这些条件且做到足够优秀时,能做出一家像苹果这样的公司吗?
李想:一定会的,一定会的。